Unified Fractional Kinetic Equation and a Fractional Diffusion Equation
نویسندگان
چکیده
منابع مشابه
Unified Fractional Kinetic Equation and a Fractional Diffusion Equation
Abstract. In earlier papers Saxena et al. (2002, 2003) derived the solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which extended the work of Haubold and Mathai (2000). The object of the present paper is to investigate the solution of a unified form of fractional kinetic equation in which the free term contains any integrable function f(t),...
متن کاملConvergence of a Kinetic Equation to a Fractional Diffusion Equation
The understanding of thermal conductance in both classical and quantum mechanical systems is one of the fundamental problems of non-equilibrium statistical mechanics. A particular aspect that has attracted much interest is the observation that autonomous translation invariant systems in dimensions one and two exhibit anomalously large conductivity. The canonical example here is a chain of anhar...
متن کاملFractional-calculus diffusion equation
BACKGROUND Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. RESULTS The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carri...
متن کاملFractional diffusion limit for a stochastic kinetic equation
We study the stochastic fractional diffusive limit of a kinetic equation involving a small parameter and perturbed by a smooth random term. Generalizing the method of perturbed test functions, under an appropriate scaling for the small parameter, and with the moment method used in the deterministic case, we show the convergence in law to a stochastic fluid limit involving a fractional Laplacian.
متن کاملSolutions of Certain Fractional Kinetic Equations and a Fractional Diffusion Equation
In view of the usefulness and importance of the kinetic equation in certain physical problems, the authors derive the explicit solution of a fractional kinetic equation of general character, that unifies and extends earlier results. Further, an alternative shorter method based on a result developed by the authors is given to derive the solution of a fractional diffusion equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astrophysics and Space Science
سال: 2004
ISSN: 0004-640X
DOI: 10.1023/b:astr.0000032531.46639.a7